Reference Joomla! - the dynamic portal engine and content management system http://climateresponsefund.org/index.php 2014-08-21T08:43:11Z Joomla! 1.5 - Open Source Content Management Oschlies et al 2010: Climate engineering by artificial upwelling -- Channeling the sorcerer's apprentive 2010-02-16T05:43:46Z 2010-02-16T05:43:46Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=140:oschlies-et-al-2010-climate-engineering-by-artificial-upwelling-channeling-the-sorcerers-apprentive&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <p> <p id="title"><a href="http://europa.agu.org/?view=article&amp;uri=/journals/gl/gl1004/2009GL041961/2009GL041961.xml&amp;t=gl,2010,oschlies"><strong>Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice</strong></a></p> <div id="texttitle" style="display: none;">Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice</div> <a href="http://europa.agu.org/?view=results&amp;q=author:%22A.%20Oschlies%22"> <p class="author">A. <span class="highlight">Oschlies</span></p> </a> <p class="affiliation">Leibniz‐Institut für Meereswissenschaften an der Universität Kiel (IFM‐GEOMAR), Kiel, Germany</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22M.%20Pahlow%22"> <p class="author">M. Pahlow</p> </a> <p class="affiliation">Leibniz‐Institut für Meereswissenschaften an der Universität Kiel (IFM‐GEOMAR), Kiel, Germany</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22A.%20Yool%22"> <p class="author">A. Yool</p> </a> <p class="affiliation">National Oceanography Centre Southampton, Southampton, UK</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22R.%20J.%20Matear%22"> <p class="author">R. J. Matear</p> </a> <p class="affiliation">CSIRO Marine Laboratories, Hobart, Tasmania, Australia</p> <div class="abstract"> <p> </p> <p id="para01">Recent suggestions to reduce the accumulation of anthropogenic carbon dioxide in the atmosphere have included ocean fertilization by artificial upwelling. Our coupled carbon‐climate model simulations suggest that artificial upwelling may, under most optimistic assumptions, be able to sequester atmospheric CO2 at a rate of about 0.9 PgC/yr. However, the model predicts that about 80% of the carbon sequestered is stored on land, as a result of reduced respiration at lower air temperatures brought about by upwelling of cold waters. This remote and distributed carbon sequestration would make monitoring and verification particularly challenging. A second caveat predicted by our simulations is that whenever artificial upwelling is stopped, simulated surface temperatures and atmospheric CO2 concentrations rise quickly and for decades to centuries to levels even somewhat higher than experienced in a world that never engaged in artificial upwelling.</p> </div> </p> <p> <p id="title"><a href="http://europa.agu.org/?view=article&amp;uri=/journals/gl/gl1004/2009GL041961/2009GL041961.xml&amp;t=gl,2010,oschlies"><strong>Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice</strong></a></p> <div id="texttitle" style="display: none;">Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice</div> <a href="http://europa.agu.org/?view=results&amp;q=author:%22A.%20Oschlies%22"> <p class="author">A. <span class="highlight">Oschlies</span></p> </a> <p class="affiliation">Leibniz‐Institut für Meereswissenschaften an der Universität Kiel (IFM‐GEOMAR), Kiel, Germany</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22M.%20Pahlow%22"> <p class="author">M. Pahlow</p> </a> <p class="affiliation">Leibniz‐Institut für Meereswissenschaften an der Universität Kiel (IFM‐GEOMAR), Kiel, Germany</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22A.%20Yool%22"> <p class="author">A. Yool</p> </a> <p class="affiliation">National Oceanography Centre Southampton, Southampton, UK</p> <a href="http://europa.agu.org/?view=results&amp;q=author:%22R.%20J.%20Matear%22"> <p class="author">R. J. Matear</p> </a> <p class="affiliation">CSIRO Marine Laboratories, Hobart, Tasmania, Australia</p> <div class="abstract"> <p> </p> <p id="para01">Recent suggestions to reduce the accumulation of anthropogenic carbon dioxide in the atmosphere have included ocean fertilization by artificial upwelling. Our coupled carbon‐climate model simulations suggest that artificial upwelling may, under most optimistic assumptions, be able to sequester atmospheric CO2 at a rate of about 0.9 PgC/yr. However, the model predicts that about 80% of the carbon sequestered is stored on land, as a result of reduced respiration at lower air temperatures brought about by upwelling of cold waters. This remote and distributed carbon sequestration would make monitoring and verification particularly challenging. A second caveat predicted by our simulations is that whenever artificial upwelling is stopped, simulated surface temperatures and atmospheric CO2 concentrations rise quickly and for decades to centuries to levels even somewhat higher than experienced in a world that never engaged in artificial upwelling.</p> </div> </p> Glossary 2010-03-06T20:23:58Z 2010-03-06T20:23:58Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=133:glossary&catid=39:reference&Itemid=64 Bill Bennett bllbnntt@mac.com <div><br /></div><h1>Glossary</h1> <p><strong>Geo-engineering</strong></p> <p>Also <em>Climate Intervention</em> or <em>Climate Engineering</em></p> <p>These terms are bandied about considerably and often used interchangeably, resulting in substantial confusion in the exchange of ideas concerning the investigation into and efforts to address the consequences of greenhouse gas emissions on the climate. Several groups have suggested use of the terms ‘climate intervention’ or 'climate engineering' to distinguish this activity from large scale civil engineering projects which have classically been called geoengineering. </p> <p>The American Meteorological Society (AMS), in their <a href="#mce_temp_url#">Policy Statement on Geoengineering</a>, defines geoengineering as large-scale efforts to deliberately manipulate physical, chemical, or biological aspects of the climate system. In the particular context of their report, geoengineering is intended to counteract the consequences of increasing greenhouse gas emissions. This definition is similar to that used by the Royal Society (UK) in their report <a href="#mce_temp_url#">Geoengineering the Climate</a>. </p> <p>The CRF stresses that these techniques are but one potential component in a comprehensive approach to strategy development and risk assessment in the effort to slow climate change and its impact on society.</p> <div><br /></div><h1>Glossary</h1> <p><strong>Geo-engineering</strong></p> <p>Also <em>Climate Intervention</em> or <em>Climate Engineering</em></p> <p>These terms are bandied about considerably and often used interchangeably, resulting in substantial confusion in the exchange of ideas concerning the investigation into and efforts to address the consequences of greenhouse gas emissions on the climate. Several groups have suggested use of the terms ‘climate intervention’ or 'climate engineering' to distinguish this activity from large scale civil engineering projects which have classically been called geoengineering. </p> <p>The American Meteorological Society (AMS), in their <a href="#mce_temp_url#">Policy Statement on Geoengineering</a>, defines geoengineering as large-scale efforts to deliberately manipulate physical, chemical, or biological aspects of the climate system. In the particular context of their report, geoengineering is intended to counteract the consequences of increasing greenhouse gas emissions. This definition is similar to that used by the Royal Society (UK) in their report <a href="#mce_temp_url#">Geoengineering the Climate</a>. </p> <p>The CRF stresses that these techniques are but one potential component in a comprehensive approach to strategy development and risk assessment in the effort to slow climate change and its impact on society.</p> Robock et al 2010: A Test for Geoengineering? 2010-01-29T07:06:44Z 2010-01-29T07:06:44Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=127:robock-et-al-2010-a-test-for-geoengineering&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <p><img src="images/stories/science.png" border="0" /></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tbody><tr><td align="left"><p id="article-info"><em>Science</em> 29 January 2010:<br />Vol. 327. no. 5965, pp. 530 - 531<br />DOI: 10.1126/science.1186237</p> </td> <td align="right"> <div id="page-nav"> <a class="page-nav_prev" href="http://www.sciencemag.org/cgi/content/short/327/5965/529" title="Go to previous article"><br /></a><a class=" page-nav_next" href="http://www.sciencemag.org/cgi/content/short/327/5965/532" title="Go to next article"></a> </div> </td> </tr> </tbody></table> <h2>Perspectives</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Atmospheric Science: </span></h2> <h2> A Test for Geoengineering?</h2> <strong> Alan Robock,<sup>1</sup> Martin Bunzl,<sup>2</sup> Ben Kravitz,<sup>1</sup> Georgiy L. Stenchikov<sup>3</sup> </strong><p> <font size="-1"> <sup>1</sup> Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.<br /> <sup>2</sup> Department of Philosophy, Rutgers University, 191 Ryders Lane, New Brunswick, NJ 08901, USA.<br /> <sup>3</sup> Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia. </font></p><p> <!-- null --> </p><p>E-mail: <span>robock@envsci.rutgers.edu</span></p><p><a href="http://www.sciencemag.org/cgi/content/full/327/5965/530"> http://www.sciencemag.org/cgi/content/full/327/5965/530</a></p><p><!-- var u = "robock", d = "envsci.rutgers.edu"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></p> Scientific and political interest in the possibility of geoengineering<sup> </sup>the climate is rising (<a href="http://www.sciencemag.org/cgi/content/full/327/5965/530#R1"><em>1</em></a>). There are currently no means of implementing<sup> </sup>geoengineering, but if a viable technology is produced in the<sup> </sup>next decade, how could it be tested? We argue that geoengineering<sup> </sup>cannot be tested without full-scale implementation. The initial<sup> </sup>production of aerosol droplets can be tested on a small scale,<sup> </sup>but how they will grow in size (which determines the injection<sup> </sup>rate needed to produce a particular cooling) can only be tested<sup> </sup>by injection into an existing aerosol cloud, which cannot be<sup> </sup>confined to one location. Furthermore, weather and climate variability<sup> </sup>preclude observation of the climate response without a large,<sup> </sup>decade-long forcing. Such full-scale implementation could disrupt<sup> </sup>food production on a large scale.<p>&nbsp;</p> <p><img src="images/stories/science.png" border="0" /></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tbody><tr><td align="left"><p id="article-info"><em>Science</em> 29 January 2010:<br />Vol. 327. no. 5965, pp. 530 - 531<br />DOI: 10.1126/science.1186237</p> </td> <td align="right"> <div id="page-nav"> <a class="page-nav_prev" href="http://www.sciencemag.org/cgi/content/short/327/5965/529" title="Go to previous article"><br /></a><a class=" page-nav_next" href="http://www.sciencemag.org/cgi/content/short/327/5965/532" title="Go to next article"></a> </div> </td> </tr> </tbody></table> <h2>Perspectives</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Atmospheric Science: </span></h2> <h2> A Test for Geoengineering?</h2> <strong> Alan Robock,<sup>1</sup> Martin Bunzl,<sup>2</sup> Ben Kravitz,<sup>1</sup> Georgiy L. Stenchikov<sup>3</sup> </strong><p> <font size="-1"> <sup>1</sup> Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.<br /> <sup>2</sup> Department of Philosophy, Rutgers University, 191 Ryders Lane, New Brunswick, NJ 08901, USA.<br /> <sup>3</sup> Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia. </font></p><p> <!-- null --> </p><p>E-mail: <span>robock@envsci.rutgers.edu</span></p><p><a href="http://www.sciencemag.org/cgi/content/full/327/5965/530"> http://www.sciencemag.org/cgi/content/full/327/5965/530</a></p><p><!-- var u = "robock", d = "envsci.rutgers.edu"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></p> Scientific and political interest in the possibility of geoengineering<sup> </sup>the climate is rising (<a href="http://www.sciencemag.org/cgi/content/full/327/5965/530#R1"><em>1</em></a>). There are currently no means of implementing<sup> </sup>geoengineering, but if a viable technology is produced in the<sup> </sup>next decade, how could it be tested? We argue that geoengineering<sup> </sup>cannot be tested without full-scale implementation. The initial<sup> </sup>production of aerosol droplets can be tested on a small scale,<sup> </sup>but how they will grow in size (which determines the injection<sup> </sup>rate needed to produce a particular cooling) can only be tested<sup> </sup>by injection into an existing aerosol cloud, which cannot be<sup> </sup>confined to one location. Furthermore, weather and climate variability<sup> </sup>preclude observation of the climate response without a large,<sup> </sup>decade-long forcing. Such full-scale implementation could disrupt<sup> </sup>food production on a large scale.<p>&nbsp;</p> Blackstock and Long 2010: The Politics of Geoengineering 2010-01-29T06:55:52Z 2010-01-29T06:55:52Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=126:blackstock-and-long-2010-the-politics-of-geoengineering&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <p><img src="images/stories/science.png" border="0" /></p><p>&nbsp;</p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tbody><tr><td align="left"><p id="article-info"><em>Science</em> 29 January 2010:<br />Vol. 327. no. 5965, p. 527<br />DOI: 10.1126/science.1183877</p> </td> <td align="right"> <div id="page-nav"> <a class="page-nav_prev" href="http://www.sciencemag.org/cgi/content/short/327/5965/525-c" title="Go to previous article"><br /></a><a class=" page-nav_next" href="http://www.sciencemag.org/cgi/content/short/327/5965/528" title="Go to next article"></a> </div> </td> </tr> </tbody></table> <h2>Policy Forum</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Climate Change: </span></h2> <h2> The Politics of Geoengineering</h2> <strong> Jason J. Blackstock<sup>1</sup><sup>,2</sup><sup>,*</sup> and Jane C. S. Long<sup>3</sup> </strong><p> <font size="-1"> <sup>1</sup> International Institute for Applied Systems Analysis, Laxenburg, A2361, Austria.<br /> <sup>2</sup> Centre for International Governance Innovation, Waterloo, N2L 6C2, Canada.<br /> <sup>3</sup> Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (DE-AC52-07NA27344). </font></p><p> <a name="COR1"></a><!-- null --> </p><p><sup>*</sup> Author for correspondence: <span>jjb@iiasa.ac.at</span></p><p><a href="http://www.sciencemag.org/cgi/content/full/327/5965/527">http://www.sciencemag.org/cgi/content/full/327/5965/527</a><br />http://www.sciencemag.org/cgi/content/full/327/5965/527<!-- var u = "jjb", d = "iiasa.ac.at"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></p> Despite mounting evidence that severe climate change could emerge<sup> </sup>rapidly, the global reduction of carbon emissions remains alarmingly<sup> </sup>elusive (<em>1</em>, <em>2</em>). As a result, concerned scientists are now asking<sup> </sup>whether geoengineering—the intentional, large-scale alteration<sup> </sup>of the climate system—might be able to limit climate change<sup> </sup>impacts. Recent prominent reviews have emphasized that such<sup> </sup>schemes are fraught with uncertainties and potential negative<sup> </sup>effects and, thus, cannot be a substitute for comprehensive<sup> </sup>mitigation (<em>3</em>, <em>4</em>). But as unabated climate change could itself<sup> </sup>prove extremely risky, these reviews also recommend expanding<sup> </sup>geoengineering research. As such research is considered (<em>5</em>–<em>7</em>), a process for ensuring global transparency and cooperation<sup> </sup>is needed.<p>&nbsp;</p> <p><img src="images/stories/science.png" border="0" /></p><p>&nbsp;</p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tbody><tr><td align="left"><p id="article-info"><em>Science</em> 29 January 2010:<br />Vol. 327. no. 5965, p. 527<br />DOI: 10.1126/science.1183877</p> </td> <td align="right"> <div id="page-nav"> <a class="page-nav_prev" href="http://www.sciencemag.org/cgi/content/short/327/5965/525-c" title="Go to previous article"><br /></a><a class=" page-nav_next" href="http://www.sciencemag.org/cgi/content/short/327/5965/528" title="Go to next article"></a> </div> </td> </tr> </tbody></table> <h2>Policy Forum</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Climate Change: </span></h2> <h2> The Politics of Geoengineering</h2> <strong> Jason J. Blackstock<sup>1</sup><sup>,2</sup><sup>,*</sup> and Jane C. S. Long<sup>3</sup> </strong><p> <font size="-1"> <sup>1</sup> International Institute for Applied Systems Analysis, Laxenburg, A2361, Austria.<br /> <sup>2</sup> Centre for International Governance Innovation, Waterloo, N2L 6C2, Canada.<br /> <sup>3</sup> Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (DE-AC52-07NA27344). </font></p><p> <a name="COR1"></a><!-- null --> </p><p><sup>*</sup> Author for correspondence: <span>jjb@iiasa.ac.at</span></p><p><a href="http://www.sciencemag.org/cgi/content/full/327/5965/527">http://www.sciencemag.org/cgi/content/full/327/5965/527</a><br />http://www.sciencemag.org/cgi/content/full/327/5965/527<!-- var u = "jjb", d = "iiasa.ac.at"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></p> Despite mounting evidence that severe climate change could emerge<sup> </sup>rapidly, the global reduction of carbon emissions remains alarmingly<sup> </sup>elusive (<em>1</em>, <em>2</em>). As a result, concerned scientists are now asking<sup> </sup>whether geoengineering—the intentional, large-scale alteration<sup> </sup>of the climate system—might be able to limit climate change<sup> </sup>impacts. Recent prominent reviews have emphasized that such<sup> </sup>schemes are fraught with uncertainties and potential negative<sup> </sup>effects and, thus, cannot be a substitute for comprehensive<sup> </sup>mitigation (<em>3</em>, <em>4</em>). But as unabated climate change could itself<sup> </sup>prove extremely risky, these reviews also recommend expanding<sup> </sup>geoengineering research. As such research is considered (<em>5</em>–<em>7</em>), a process for ensuring global transparency and cooperation<sup> </sup>is needed.<p>&nbsp;</p> Keith et al 2010: Research on sun block needed now 2010-01-28T06:44:11Z 2010-01-28T06:44:11Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=125:keith-et-al-2010-research-on-sun-block-needed-now&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <p><img src="images/stories/nature_com.gif" border="0" /></p><h1 class="page-header">Opinion</h1><p id="cite"><em>Nature</em> <strong>463</strong>, 426-427 (28 January 2010) | <span class="doi"><abbr title="Digital Object Identifier">doi</abbr>:10.1038/463426a</span>; Published online 27 January 2010</p><h2 id="atl">Research on global sun block needed now</h2><p id="aug">David W. Keith, Edward Parson & M. Granger Morgan</p><div id="abs"><a class="backtotop" href="http://www.nature.com/nature/journal/v463/n7280/full/463426a.html#top"></a><h3 class="hidden">Abstract</h3><p class="lead">Geoengineering studies of solar-radiation management should begin urgently, argue David W. Keith, Edward Parson and M. Granger Morgan — before a rogue state decides to act alone.</p></div><p class="norm"><strong><em>Summary</em></strong></p><ul class="norm"><li><strong><em>Field testing is required to understand the risks of solar-radiation management (SRM)</em></strong></li><li><strong><em>Linked activities must create norms and understanding for international governance of SRM</em></strong></li><li><strong><em>If SRM is unworkable, the sooner we know, the less moral hazard it poses</em></strong></li></ul><a href="http://www.nature.com/nature/journal/v463/n7280/full/463426a.html">http://www.nature.com/nature/journal/v463/n7280/full/463426a.html</a><br /><p>&nbsp;</p> <p><img src="images/stories/nature_com.gif" border="0" /></p><h1 class="page-header">Opinion</h1><p id="cite"><em>Nature</em> <strong>463</strong>, 426-427 (28 January 2010) | <span class="doi"><abbr title="Digital Object Identifier">doi</abbr>:10.1038/463426a</span>; Published online 27 January 2010</p><h2 id="atl">Research on global sun block needed now</h2><p id="aug">David W. Keith, Edward Parson & M. Granger Morgan</p><div id="abs"><a class="backtotop" href="http://www.nature.com/nature/journal/v463/n7280/full/463426a.html#top"></a><h3 class="hidden">Abstract</h3><p class="lead">Geoengineering studies of solar-radiation management should begin urgently, argue David W. Keith, Edward Parson and M. Granger Morgan — before a rogue state decides to act alone.</p></div><p class="norm"><strong><em>Summary</em></strong></p><ul class="norm"><li><strong><em>Field testing is required to understand the risks of solar-radiation management (SRM)</em></strong></li><li><strong><em>Linked activities must create norms and understanding for international governance of SRM</em></strong></li><li><strong><em>If SRM is unworkable, the sooner we know, the less moral hazard it poses</em></strong></li></ul><a href="http://www.nature.com/nature/journal/v463/n7280/full/463426a.html">http://www.nature.com/nature/journal/v463/n7280/full/463426a.html</a><br /><p>&nbsp;</p> Heckendorn et al 2009: The impact of geoengineering aerosols on stratospheric temperature and ozone 2009-11-13T07:16:22Z 2009-11-13T07:16:22Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=121:heckendorn-et-al-2009-the-impact-of-geoengineering-aerosols-on-stratospheric-temperature-and-ozone&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <h2 class="abstitle">The impact of geoengineering aerosols on stratospheric temperature and ozone</h2><p> <span class="cite"><span class="cite_authors">P Heckendorn <em>et al</em></span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045108 (12pp)</span></p><p>&nbsp;</p><h2 class="abstitle">The impact of geoengineering aerosols on stratospheric temperature and ozone</h2> <p id="citation"><span class="cite"><span class="cite_authors">P Heckendorn <em>et al</em></span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045108 (12pp)   doi: <a href="http://dx.doi.org/10.1088/1748-9326/4/4/045108">10.1088/1748-9326/4/4/045108</a></span>  <a href="http://www.iop.org/EJ/help/-topic=abstract/abstract/1748-9326/4/4/045108"><img src="http://ej.iop.org/icons/EJ4/go_info.gif" border="0" alt="Help" align="absmiddle" /></a></p> <table border="0" cellspacing="0" cellpadding="0" bgcolor="#99ccff"> <tbody><tr> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_tl.gif" border="0" width="5" height="5" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/spacer.gif" border="0" width="1" height="1" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_tr.gif" border="0" width="5" height="5" /></td> </tr> <tr> <td>&nbsp;</td> <td> <table border="0" cellspacing="0" cellpadding="0"> <tbody><tr> <td><a href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.pdf"><img src="http://ej.iop.org/icons/EJ4/abstract/ft_new.gif" border="0" width="102" height="25" /></a></td> <td>   <a class="smlblk" href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.pdf">PDF (600 KB)</a> | <a class="smlblk" href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.html">HTML</a> | <a class="smlblk" href="http://www.iop.org/EJ/refs/1748-9326/4/4/045108">References</a></td> </tr> </tbody></table> </td> <td>&nbsp;</td> </tr> <tr> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_bl.gif" border="0" width="5" height="5" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/spacer.gif" border="0" width="1" height="1" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_br.gif" border="0" width="5" height="5" /></td> </tr> </tbody></table> <br /><span class="absauth"> <a href="http://www.iop.org/EJ/search_author?query2=P%20Heckendorn&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">P Heckendorn</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=D%20Weisenstein&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">D Weisenstein</a><sup>2</sup>, <a href="http://www.iop.org/EJ/search_author?query2=S%20Fueglistaler&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">S Fueglistaler</a><sup>3</sup>, <a href="http://www.iop.org/EJ/search_author?query2=B%20P%20Luo&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">B P Luo</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=E%20Rozanov&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">E Rozanov</a><sup>1,4</sup>, <a href="http://www.iop.org/EJ/search_author?query2=M%20Schraner&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">M Schraner</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=L%20W%20Thomason&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">L W Thomason</a><sup>5</sup> and <a href="http://www.iop.org/EJ/search_author?query2=T%20Peter&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">T Peter</a><sup>1</sup></span><span class="absaffil"><br /> <sup>1</sup> Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland<br /> <sup>2</sup> AER, Lexington, MA, USA<br /> <sup>3</sup> DAMTP, University of Cambridge, UK<br /> <sup>4</sup> PMOD-WRC, Davos, Switzerland<br /> <sup>5</sup> NASA Langley Research Center, Hampton, VA, USA<br /> E-mail: <a href="mailto:patricia.heckendorn@env.ethz.ch">patricia.heckendorn@env.ethz.ch</a></span><span class="times">Part of <a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045101">Focus on Climate Engineering: Intentional Intervention in the Climate System</a> <div><p class="abspara"><strong class="abs_abstitle">Abstract.</strong> Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1–10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H<sub>2</sub>O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.</p><p><span class="absdates">Received 29 May 2009, accepted for publication 28 October 2009<br /> Published 13 November 2009</span></p></div></span><p>&nbsp;</p> <h2 class="abstitle">The impact of geoengineering aerosols on stratospheric temperature and ozone</h2><p> <span class="cite"><span class="cite_authors">P Heckendorn <em>et al</em></span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045108 (12pp)</span></p><p>&nbsp;</p><h2 class="abstitle">The impact of geoengineering aerosols on stratospheric temperature and ozone</h2> <p id="citation"><span class="cite"><span class="cite_authors">P Heckendorn <em>et al</em></span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045108 (12pp)   doi: <a href="http://dx.doi.org/10.1088/1748-9326/4/4/045108">10.1088/1748-9326/4/4/045108</a></span>  <a href="http://www.iop.org/EJ/help/-topic=abstract/abstract/1748-9326/4/4/045108"><img src="http://ej.iop.org/icons/EJ4/go_info.gif" border="0" alt="Help" align="absmiddle" /></a></p> <table border="0" cellspacing="0" cellpadding="0" bgcolor="#99ccff"> <tbody><tr> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_tl.gif" border="0" width="5" height="5" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/spacer.gif" border="0" width="1" height="1" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_tr.gif" border="0" width="5" height="5" /></td> </tr> <tr> <td>&nbsp;</td> <td> <table border="0" cellspacing="0" cellpadding="0"> <tbody><tr> <td><a href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.pdf"><img src="http://ej.iop.org/icons/EJ4/abstract/ft_new.gif" border="0" width="102" height="25" /></a></td> <td>   <a class="smlblk" href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.pdf">PDF (600 KB)</a> | <a class="smlblk" href="http://www.iop.org/EJ/article/1748-9326/4/4/045108/erl9_4_045108.html">HTML</a> | <a class="smlblk" href="http://www.iop.org/EJ/refs/1748-9326/4/4/045108">References</a></td> </tr> </tbody></table> </td> <td>&nbsp;</td> </tr> <tr> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_bl.gif" border="0" width="5" height="5" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/spacer.gif" border="0" width="1" height="1" /></td> <td><img src="http://ej.iop.org/icons/EJ4/abstract/cv_br.gif" border="0" width="5" height="5" /></td> </tr> </tbody></table> <br /><span class="absauth"> <a href="http://www.iop.org/EJ/search_author?query2=P%20Heckendorn&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">P Heckendorn</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=D%20Weisenstein&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">D Weisenstein</a><sup>2</sup>, <a href="http://www.iop.org/EJ/search_author?query2=S%20Fueglistaler&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">S Fueglistaler</a><sup>3</sup>, <a href="http://www.iop.org/EJ/search_author?query2=B%20P%20Luo&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">B P Luo</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=E%20Rozanov&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">E Rozanov</a><sup>1,4</sup>, <a href="http://www.iop.org/EJ/search_author?query2=M%20Schraner&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">M Schraner</a><sup>1</sup>, <a href="http://www.iop.org/EJ/search_author?query2=L%20W%20Thomason&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">L W Thomason</a><sup>5</sup> and <a href="http://www.iop.org/EJ/search_author?query2=T%20Peter&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1" title="Find more articles by this author">T Peter</a><sup>1</sup></span><span class="absaffil"><br /> <sup>1</sup> Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland<br /> <sup>2</sup> AER, Lexington, MA, USA<br /> <sup>3</sup> DAMTP, University of Cambridge, UK<br /> <sup>4</sup> PMOD-WRC, Davos, Switzerland<br /> <sup>5</sup> NASA Langley Research Center, Hampton, VA, USA<br /> E-mail: <a href="mailto:patricia.heckendorn@env.ethz.ch">patricia.heckendorn@env.ethz.ch</a></span><span class="times">Part of <a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045101">Focus on Climate Engineering: Intentional Intervention in the Climate System</a> <div><p class="abspara"><strong class="abs_abstitle">Abstract.</strong> Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1–10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H<sub>2</sub>O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.</p><p><span class="absdates">Received 29 May 2009, accepted for publication 28 October 2009<br /> Published 13 November 2009</span></p></div></span><p>&nbsp;</p> MacCracken 2009: On the possible use of geoengineering to moderate specific climate change impacts 2009-10-12T07:01:47Z 2009-10-12T07:01:47Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=120:maccracken-2009-on-the-possible-use-of-geoengineering-to-moderate-specific-climate-change-impacts&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <h2 class="abstitle">On the possible use of geoengineering to moderate specific climate change impacts</h2><p> <span class="cite"><span class="cite_authors">Michael C MacCracken</span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045107 (14pp)</span></p><p><span class="absauth"> Michael C MacCracken</span><span class="absaffil"><br /> Climate Institute, Washington, DC 20006, USA</span></p><p><span class="times"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045107">http://www.iop.org/EJ/abstract/1748-9326/4/4/045107 </a><div><p class="abspara"><strong class="abs_abstitle">Abstract.</strong> With significant reductions in emissions likely to require decades and the impacts of projected climate change likely to become more and more severe, proposals for taking deliberate action to counterbalance global warming have been proposed as an important complement to reducing emissions. While a number of geoengineering approaches have been proposed, each introduces uncertainties, complications and unintended consequences that have only begun to be explored. For limiting and reversing global climate change over periods of years to decades, <em>solar radiation management</em>, particularly injection of sulfate aerosols into the stratosphere, has emerged as the leading approach, with mesospheric reflectors and satellite deflectors also receiving attention. For a number of reasons, tropospheric approaches to solar radiation management present greater challenges if the objective is to reduce the increase in global average temperature. However, such approaches have a number of advantages if the objective is to alleviate specific consequences of climate change expected to cause significant impacts for the environment and society. Among the most damaging aspects of the climate that might be countered are: the warming of low-latitude oceans that observations suggest contribute to more intense tropical cyclones and coral bleaching; the amplified warming of high latitudes and the associated melting of ice that has been accelerating sea level rise and altering mid-latitude weather; and the projected reduction in the loading and cooling influence of sulfate aerosols, which has the potential to augment warming sufficient to trigger methane and carbon feedbacks. For each of these impacts, suitable scientific, technological, socioeconomic, and governance research has the potential to lead to tropospheric geoengineering approaches that, with a well-funded research program, could begin playing a moderating role for some aspects of climate change within a decade.</p><p><span class="absdates">Received 8 May 2009, accepted for publication 12 October 2009<br /> Published 30 October 2009</span></p></div></span> </p> <h2 class="abstitle">On the possible use of geoengineering to moderate specific climate change impacts</h2><p> <span class="cite"><span class="cite_authors">Michael C MacCracken</span> 2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045107 (14pp)</span></p><p><span class="absauth"> Michael C MacCracken</span><span class="absaffil"><br /> Climate Institute, Washington, DC 20006, USA</span></p><p><span class="times"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045107">http://www.iop.org/EJ/abstract/1748-9326/4/4/045107 </a><div><p class="abspara"><strong class="abs_abstitle">Abstract.</strong> With significant reductions in emissions likely to require decades and the impacts of projected climate change likely to become more and more severe, proposals for taking deliberate action to counterbalance global warming have been proposed as an important complement to reducing emissions. While a number of geoengineering approaches have been proposed, each introduces uncertainties, complications and unintended consequences that have only begun to be explored. For limiting and reversing global climate change over periods of years to decades, <em>solar radiation management</em>, particularly injection of sulfate aerosols into the stratosphere, has emerged as the leading approach, with mesospheric reflectors and satellite deflectors also receiving attention. For a number of reasons, tropospheric approaches to solar radiation management present greater challenges if the objective is to reduce the increase in global average temperature. However, such approaches have a number of advantages if the objective is to alleviate specific consequences of climate change expected to cause significant impacts for the environment and society. Among the most damaging aspects of the climate that might be countered are: the warming of low-latitude oceans that observations suggest contribute to more intense tropical cyclones and coral bleaching; the amplified warming of high latitudes and the associated melting of ice that has been accelerating sea level rise and altering mid-latitude weather; and the projected reduction in the loading and cooling influence of sulfate aerosols, which has the potential to augment warming sufficient to trigger methane and carbon feedbacks. For each of these impacts, suitable scientific, technological, socioeconomic, and governance research has the potential to lead to tropospheric geoengineering approaches that, with a well-funded research program, could begin playing a moderating role for some aspects of climate change within a decade.</p><p><span class="absdates">Received 8 May 2009, accepted for publication 12 October 2009<br /> Published 30 October 2009</span></p></div></span> </p> Hangx and Spiers 2009: Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability 2009-12-01T06:55:18Z 2009-12-01T06:55:18Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=119:hangx-and-spiers-2009-coastal-spreading-of-olivine-to-control-atmospheric-co2-concentrations-a-critical-analysis-of-viability&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <div class="articleTitle"> Coastal spreading of olivine to control atmospheric CO<sub>2</sub> concentrations: A critical analysis of viability </div><!-- articleText --> <div id="authorsAnchors" class="authorsNoEnt"><div class="refMsg nojs" style="display: none"><br /><br /><br />References and further reading may be available for this article. To view references and further reading you must <a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B83WP-4WXC21N-1&_user=10&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=33792&_sort=d&_docanchor=&view=c&_searchStrId=1172825988&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c4b2a120121889f2a43aa08209b31159">purchase</a> this article.<br /><br /></div><!-- refMsg --><strong> <p>Suzanne J.T. Hangx<a name="bcor1"></a> and Christopher J. Spiers</p> </strong></div><!-- authorsNoEnt --> <div class="articleText authorsNoEnt" style="display: inline"><div id="authorsAnchors" class="authorsNoEnt"> <p><a name="implicit0"></a>HPT-laboratory, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, P.O. Box 80021, 3508 TA Utrecht, The Netherlands</p> </div> <!-- authorsNoEnt --></div> <!-- articleText --> <div class="articleText" style="display: inline"> Received 11 February 2009;  </div><!-- articleText --><div class="articleText" style="display: inline">revised 24 June 2009;  </div><!-- articleText --><div class="articleText" style="display: inline">accepted 2 July 2009.  </div><!-- articleText --><div class="articleText" style="display: inline">Available online 3 August 2009. </div><!-- articleText --> <br /><br />&lt;<a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B83WP-4WXC21N-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1172825988&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=75a141315c4cfd663447a23b20c77dba">link</a>&gt;<br /><!-- articleText --><div class="articleText" style="display: inline"><div class="articleText_indent"> <h3 class="h3">Abstract</h3><p>Qualitative proposals to control atmospheric CO<sub>2</sub> concentrations by spreading crushed olivine rock along the Earth's coastlines, thereby accelerating weathering reactions, are presently attracting considerable attention. This paper provides a critical evaluation of the concept, demonstrating quantitatively whether or not it can contribute significantly to CO<sub>2</sub> sequestration. The feasibility of the concept depends on the rate of olivine dissolution, the sequestration capacity of the dominant reaction, and its CO<sub>2</sub> footprint. Kinetics calculations show that offsetting 30% of worldwide 1990 CO<sub>2</sub> emissions by beach weathering means distributing of 5.0 Gt of olivine per year. For mean seawater temperatures of 15–25 °C, olivine sand (300 μm grain size) takes 700–2100 years to reach the necessary steady state sequestration rate and is therefore of little practical value. To obtain useful, steady state CO<sub>2</sub> uptake rates within 15–20 years requires grain sizes &lt;10 μm. However, the preparation and movement of the required material poses major economic, infrastructural and public health questions. We conclude that coastal spreading of olivine is not a viable method of CO<sub>2</sub> sequestration on the scale needed. The method certainly cannot replace CCS technologies as a means of controlling atmospheric CO<sub>2</sub> concentrations.</p> </div></div><!-- articleText --> <div class="articleText" style="display: inline"> <p><strong>Keywords: </strong>CO<sub>2</sub> sequestration; Olivine; Mineralisation; Weathering</p> </div> <div class="articleTitle"> Coastal spreading of olivine to control atmospheric CO<sub>2</sub> concentrations: A critical analysis of viability </div><!-- articleText --> <div id="authorsAnchors" class="authorsNoEnt"><div class="refMsg nojs" style="display: none"><br /><br /><br />References and further reading may be available for this article. To view references and further reading you must <a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B83WP-4WXC21N-1&_user=10&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=33792&_sort=d&_docanchor=&view=c&_searchStrId=1172825988&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c4b2a120121889f2a43aa08209b31159">purchase</a> this article.<br /><br /></div><!-- refMsg --><strong> <p>Suzanne J.T. Hangx<a name="bcor1"></a> and Christopher J. Spiers</p> </strong></div><!-- authorsNoEnt --> <div class="articleText authorsNoEnt" style="display: inline"><div id="authorsAnchors" class="authorsNoEnt"> <p><a name="implicit0"></a>HPT-laboratory, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, P.O. Box 80021, 3508 TA Utrecht, The Netherlands</p> </div> <!-- authorsNoEnt --></div> <!-- articleText --> <div class="articleText" style="display: inline"> Received 11 February 2009;  </div><!-- articleText --><div class="articleText" style="display: inline">revised 24 June 2009;  </div><!-- articleText --><div class="articleText" style="display: inline">accepted 2 July 2009.  </div><!-- articleText --><div class="articleText" style="display: inline">Available online 3 August 2009. </div><!-- articleText --> <br /><br />&lt;<a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B83WP-4WXC21N-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1172825988&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=75a141315c4cfd663447a23b20c77dba">link</a>&gt;<br /><!-- articleText --><div class="articleText" style="display: inline"><div class="articleText_indent"> <h3 class="h3">Abstract</h3><p>Qualitative proposals to control atmospheric CO<sub>2</sub> concentrations by spreading crushed olivine rock along the Earth's coastlines, thereby accelerating weathering reactions, are presently attracting considerable attention. This paper provides a critical evaluation of the concept, demonstrating quantitatively whether or not it can contribute significantly to CO<sub>2</sub> sequestration. The feasibility of the concept depends on the rate of olivine dissolution, the sequestration capacity of the dominant reaction, and its CO<sub>2</sub> footprint. Kinetics calculations show that offsetting 30% of worldwide 1990 CO<sub>2</sub> emissions by beach weathering means distributing of 5.0 Gt of olivine per year. For mean seawater temperatures of 15–25 °C, olivine sand (300 μm grain size) takes 700–2100 years to reach the necessary steady state sequestration rate and is therefore of little practical value. To obtain useful, steady state CO<sub>2</sub> uptake rates within 15–20 years requires grain sizes &lt;10 μm. However, the preparation and movement of the required material poses major economic, infrastructural and public health questions. We conclude that coastal spreading of olivine is not a viable method of CO<sub>2</sub> sequestration on the scale needed. The method certainly cannot replace CCS technologies as a means of controlling atmospheric CO<sub>2</sub> concentrations.</p> </div></div><!-- articleText --> <div class="articleText" style="display: inline"> <p><strong>Keywords: </strong>CO<sub>2</sub> sequestration; Olivine; Mineralisation; Weathering</p> </div> Hegerl and Solomon 2009: Climate Change - Risks of Climate Engineering 2009-08-06T06:37:58Z 2009-08-06T06:37:58Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=118:hegerl-and-solomon-climate-change-risks-of-climate-engineering&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <h2>Perspectives</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Climate Change: </span></h2> <h2> Risks of Climate Engineering</h2><p> <strong> Gabriele C. Hegerl<sup>1</sup> and Susan Solomon<sup>2</sup></strong></p><p>&lt;<a href="http://www.sciencemag.org/cgi/content/summary/325/5943/955">link</a>&gt; </p><p> As the risks of climate change and the difficulty of effectively reducing greenhouse gas emissions become increasingly obvious, potential geoengineering solutions are widely discussed. For example, in a recent report, Blackstock <em>et al.</em> explore the feasibility, potential impact, and dangers of shortwave climate engineering, which aims to reduce the incoming solar radiation and thereby reduce climate warming (<em>1</em>). Proposed geoengineering solutions tend to be controversial among climate scientists and attract considerable media attention (<em>2</em>, <em>3</em>). However, by focusing on limiting warming, the debate creates a false sense of certainty and downplays the impacts of geoengineering solutions. </p><p> <font size="-1"> <sup>1</sup> Grant Institute, Kings Buildings, West Mains Road, Edinburgh EH9 3JW, UK.<br /> <sup>2</sup> National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway R/CSD, Boulder, CO 80305–3337, USA. </font></p> <h2>Perspectives</h2> <!-- BEGIN: legacy HTML content --> <!--RESUMEHIGHLIGHT--> <h2><span class="overline">Climate Change: </span></h2> <h2> Risks of Climate Engineering</h2><p> <strong> Gabriele C. Hegerl<sup>1</sup> and Susan Solomon<sup>2</sup></strong></p><p>&lt;<a href="http://www.sciencemag.org/cgi/content/summary/325/5943/955">link</a>&gt; </p><p> As the risks of climate change and the difficulty of effectively reducing greenhouse gas emissions become increasingly obvious, potential geoengineering solutions are widely discussed. For example, in a recent report, Blackstock <em>et al.</em> explore the feasibility, potential impact, and dangers of shortwave climate engineering, which aims to reduce the incoming solar radiation and thereby reduce climate warming (<em>1</em>). Proposed geoengineering solutions tend to be controversial among climate scientists and attract considerable media attention (<em>2</em>, <em>3</em>). However, by focusing on limiting warming, the debate creates a false sense of certainty and downplays the impacts of geoengineering solutions. </p><p> <font size="-1"> <sup>1</sup> Grant Institute, Kings Buildings, West Mains Road, Edinburgh EH9 3JW, UK.<br /> <sup>2</sup> National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway R/CSD, Boulder, CO 80305–3337, USA. </font></p> ERL 2009: Focus on Climate Engineering 2009-09-02T06:20:17Z 2009-09-02T06:20:17Z http://climateresponsefund.org/index.php?option=com_content&view=article&id=117:erl-2009-focus-on-climate-engineering&catid=39:reference&Itemid=64 Administrator mleinen@climateresponsefund.orf <h2 class="abstitle">Focus on Climate Engineering: Intentional Intervention in the Climate System</h2> <p id="citation"><span class="cite">2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045101  </span></p><p id="citation">&lt;<a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045101">link</a>&gt; </p> <p class="abspara">Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched.</p> <p class="abspara">This focus issue of <em>Environmental Research Letters</em> is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept.</p> <p class="abspara"><strong>Further reading</strong><br /> Focus on Geoengineering at <a href="http://environmentalresearchweb.org/cws/subject/tag=geoengineering">http://environmentalresearchweb.org/cws/subject/tag=geoengineering</a><br /> <em>IOP Conference Series: Earth and Environmental Science</em> is an open-access proceedings service available at <a href="http://www.iop.org/EJ/journal/ees">www.iop.org/EJ/journal/ees</a></p> <p class="abspara"><strong><em>Focus on Climate Engineering: Intentional Intervention in the Climate System</em> Contents</strong></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045102">Modification of cirrus clouds to reduce global warming</a> <br /> <em>David L Mitchell and William Finnegan</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045103">Climate engineering and the risk of rapid climate change</a> <br /> <em>Andrew Ross and H Damon Matthews</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045104">Researching geoengineering: should not or could not?</a> <br /> <em>Martin Bunzl</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045105">Of mongooses and mitigation: ecological analogues to geoengineering</a> <br /> <em>H Damon Matthews and Sarah E Turner</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045106">Toward ethical norms and institutions for climate engineering research</a> <br /> <em>David R Morrow, Robert E Kopp and Michael Oppenheimer</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045107">On the possible use of geoengineering to moderate specific climate change impacts</a> <br /> <em>Michael C MacCracken</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045108">The impact of geoengineering aerosols on stratospheric temperature and ozone</a> <br /> <em>P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045109">The fate of the Greenland Ice Sheet in a geoengineered, high CO<sub>2</sub> world</a> <br /> <em>Peter J Irvine, Daniel J Lunt, Emma J Stone and Andy Ridgwell</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045110">Assessing the benefits of crop albedo bio-geoengineering</a> <br /> <em>Joy S Singarayer, Andy Ridgwell and Peter Irvine</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045111">Can we control El Niño?</a> <br /> <em>Douglas G MacMynowski</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045112">Geoengineering by cloud seeding: influence on sea ice and climate system</a> <br /> <em>Philip J Rasch, John Latham and Chih-Chieh (Jack) Chen</em></p> <h2 class="abstitle">Focus on Climate Engineering: Intentional Intervention in the Climate System</h2> <p id="citation"><span class="cite">2009 <em class="cite_journal_full">Environ. Res. Lett.</em> <strong class="cite_volume">4</strong> 045101  </span></p><p id="citation">&lt;<a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045101">link</a>&gt; </p> <p class="abspara">Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched.</p> <p class="abspara">This focus issue of <em>Environmental Research Letters</em> is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept.</p> <p class="abspara"><strong>Further reading</strong><br /> Focus on Geoengineering at <a href="http://environmentalresearchweb.org/cws/subject/tag=geoengineering">http://environmentalresearchweb.org/cws/subject/tag=geoengineering</a><br /> <em>IOP Conference Series: Earth and Environmental Science</em> is an open-access proceedings service available at <a href="http://www.iop.org/EJ/journal/ees">www.iop.org/EJ/journal/ees</a></p> <p class="abspara"><strong><em>Focus on Climate Engineering: Intentional Intervention in the Climate System</em> Contents</strong></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045102">Modification of cirrus clouds to reduce global warming</a> <br /> <em>David L Mitchell and William Finnegan</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045103">Climate engineering and the risk of rapid climate change</a> <br /> <em>Andrew Ross and H Damon Matthews</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045104">Researching geoengineering: should not or could not?</a> <br /> <em>Martin Bunzl</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045105">Of mongooses and mitigation: ecological analogues to geoengineering</a> <br /> <em>H Damon Matthews and Sarah E Turner</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045106">Toward ethical norms and institutions for climate engineering research</a> <br /> <em>David R Morrow, Robert E Kopp and Michael Oppenheimer</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045107">On the possible use of geoengineering to moderate specific climate change impacts</a> <br /> <em>Michael C MacCracken</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045108">The impact of geoengineering aerosols on stratospheric temperature and ozone</a> <br /> <em>P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045109">The fate of the Greenland Ice Sheet in a geoengineered, high CO<sub>2</sub> world</a> <br /> <em>Peter J Irvine, Daniel J Lunt, Emma J Stone and Andy Ridgwell</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045110">Assessing the benefits of crop albedo bio-geoengineering</a> <br /> <em>Joy S Singarayer, Andy Ridgwell and Peter Irvine</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045111">Can we control El Niño?</a> <br /> <em>Douglas G MacMynowski</em></p> <p class="abspara"><a href="http://www.iop.org/EJ/abstract/1748-9326/4/4/045112">Geoengineering by cloud seeding: influence on sea ice and climate system</a> <br /> <em>Philip J Rasch, John Latham and Chih-Chieh (Jack) Chen</em></p>